LinearMaxwellVlasov.jl Documentation
Core.Type
— MethodThe function parallel gives the same answers for a given set of inputs. Calculate the key given the inputs and the (identity) operator for storing and retrieving values
LinearMaxwellVlasov.CacheOp
— MethodIdentity operator for storing and retreiving values from CacheDict
LinearMaxwellVlasov.ColdSpecies
— TypeColdSpecies <: AbstractFluidSpecies
Cold plasma species. Fields:
Π
Plasma frequency [rad / s]Ω
Cyclotron Frequency [rad / s]
LinearMaxwellVlasov.ConcertinaSinpi
— Method(c::ConcertinaSinpi)(t)
Evaluate and sum the ConcertinaSinpi function at location (t, v⊥)
where t ∈ (0, 1). t is mapped to (0, 1) + az[1]:az[2], so that it takes into account the sign of the denominator, sinpi(t + ax[1]:azp[2]), before finally dividing by |sinpi(t)|.
...
Arguments
c::ConcertinaSinpi(tv⊥)
:
...
LinearMaxwellVlasov.Configuration
— MethodConfiguration(args...)
This holds the frequency, wavenumber and options object of the calculation i.e. everything except the plasma.
...
Arguments
args...
:
...
Example
LinearMaxwellVlasov.CoupledRelativisticSpecies
— TypeKinetic plasma species defined by one coupled distribution function in momentum space such that the relativistic dielectric tensor can be calculated. Fields:
Π
Plasma frequency [rad / s]Ω
Cyclotron Frequency [rad / s]mass
Species particle mass [kg]F :: AbstractFRelativisticMomentum
Distribution function in momentum space parallel and perpendicular to the background magnetic field (normalised)
LinearMaxwellVlasov.CoupledRelativisticSpecies
— TypeCoupledRelativisticSpecies(Π,Ω,m,pthz::Number,pth⊥=pthz,pzdrift=0)
...
Arguments
Π
: classical plasma frequency [rad/s]Ω
: classical cyclotron frequency [rad/s]m
: mass [kg]pthz::Number
: parallel thermal momentum [kg m/s]pth⊥=pthz
: perpendicular thermal moment [kg m/s]pzdrift=0
: parallel bulk momentum [kg m/s]
...
LinearMaxwellVlasov.CoupledVelocitySpecies
— TypeKinetic plasma species defined by one coupled distribution function in velocity space, parallel and perpendicular to the background magnetic field Fields:
Π
Plasma frequency [rad / s]Ω
Cyclotron Frequency [rad / s]F :: AbstractCoupledVelocity
Distribution function in velocity space parallel and perpendicular to the background magnetic field (normalised)
LinearMaxwellVlasov.CoupledVelocitySpecies
— TypeCoupledVelocitySpecies(Π::Float64,Ω::Float64,vthz::Float64,vth⊥::Float64=vthz,vzdrift::Float64=0.0,v⊥drift::Float64=0.0)
...
Arguments
Π::Float64
: plasma frequency [rad/s]Ω::Float64
: cyclotron frequency [rad/s]vthz::Float64
: parallel thermal speed [m/s]vth⊥::Float64=vthz
: perpendicular thermal speed [m/s]vzdrift::Float64=0.0
: parallel bulk speed [m/s]v⊥drift::Float64=0.0
: perpendicular bulk speed [m/s]
...
LinearMaxwellVlasov.FBeam
— MethodFBeam(vth::T,vd::U=0.0)where{T<:Number,U<:Number}
Create a suitably normalised parallel distribution function proportational to exp(-(vz-vd)^2/vthz^2)
...
Arguments
vth::T
: thermal velocity [m/s]vd::U=0.0
: bulk parallel velocity [m/s]
...
LinearMaxwellVlasov.FCoupledVelocityNumerical
— TypeFCoupledVelocityNumerical
A disribution function where vz and v⊥ are coupled, i.e. non-separable.
...
Arguments
F::T
: the distrubtion functionnormalisation::Tuple{U,U}
: the speeds used for normalisation in parallel and perp [m/s]lower::Float64
: minimum speed for integration bounds [m/s]upper::Float64
: maximum speed for integration bounds [m/s]
...
Example
vth = 1e4
vshell = 1e5
fshell = FShell(vth, vshell)
lower = vshell - 12 * vth # where the shell is zero
upper = vshell + 12 * vth # where the shell is zero
FCoupledVelocityNumerical(fshell, (vshell, vshell), lower, upper)
LinearMaxwellVlasov.FParallelDiracDelta
— TypeThe Dirac-delta function parallel distribution functions
LinearMaxwellVlasov.FParallelNumerical
— TypeType for an arbitrary parallel distribution function that holds, a function for the distribution function, it's derivative and the limits of integral
LinearMaxwellVlasov.FPerpendicularDiracDelta
— TypeThe Dirac-delta function parallel distribution functions
LinearMaxwellVlasov.FPerpendicularNumerical
— TypeType for an arbitrary perpendicular distribution function that holds, a function for the distribution function, it's derivative and the limits of integral
LinearMaxwellVlasov.FRing
— MethodFRing(vth::T,vd::U=0.0)where{T<:Number,U<:Number}
Create a suitably normalised ring distribution in perpendicular velocity proportional to exp(-(v⊥-vd)^2/vthz^2)
...
Arguments
vth::T
: thermal velocity [m/s]vd::U=0.0
: bulk perpendicular velocity [m/s]
...
LinearMaxwellVlasov.MaxwellianIntegralsParallel
— MethodThe parallel integral of the Beam only requires an integral over a drifting Maxwellian subject to the relevant kernels. All this is calculated here.
LinearMaxwellVlasov.MaxwellianIntegralsPerpendicular
— MethodPerpendicular integrals for a Maxwellian
LinearMaxwellVlasov.NeutralPlasma
— TypeNeutralPlasma checks that the plasma is neutral
LinearMaxwellVlasov.Options
— MethodOptions(::Type{T}=Float64;kwargstuple...)where{T}
Create an Options object a set of kwargs. Best to read the code to see what counts as a duplicate. Copying that logic here will only create broken docs in the future.
...
Arguments
::Type{T}=Float64
: the number type to express the tolerances in
Optional args:
kwargstuple...
: the keyword arguments that are preferred over the defaults
...
LinearMaxwellVlasov.PerpendicularKernel
— TypeThe kernel of the perpendicular integral
LinearMaxwellVlasov.Plasma
— TypePlasma doesn't check if the plasma is neutral
LinearMaxwellVlasov.RelativisticHarmonic
— TypeRelativestic dielectric tensor as a function of cyclotron harmonic This is only used for the principal part.
LinearMaxwellVlasov.RelativisticMaxwellian
— TypeRelativisticMaxwellian Return a drifting Maxwellian function.
Members
pthz::Real - thermal momentum parallel to magnetic field [kg m/s] pth⊥::Real - thermal momentum perpendicular to magnetic field [kg m/s] pzdrift::Real=0.0 - drift parallel to the magnetic field [kg m/s] lognormalisation::Real - the log of the normalisation constant
LinearMaxwellVlasov.SeparableVelocitySpecies
— TypeKinetic plasma species with separable distribution functions parallel and perpendicular to the magnetic field. Fields:
Π
Plasma frequency [rad / s]Ω
Cyclotron Frequency [rad / s]Fz :: AbstractFParallel
Distribution function parallel to magnetic field (normalised)F⊥ :: AbstractFPerpendicular
Distribution function perpendicular to magnetic field (normalised)
LinearMaxwellVlasov.ShiftedMaxwellianParallel
— TypeThe probability density at parallel velocity, v, of a shifted maxwellian from thermal velocity vth, and drift velocity vd.
LinearMaxwellVlasov.ShiftedMaxwellianPerpendicular
— TypeThe probability density at perpendicular velocity, v, of a shifted maxwellian from thermal velocity vth, and drift velocity vd.
LinearMaxwellVlasov.TransformFromInfinity
— TypeTransform a function from domain [-∞, ∞]ⁿ down to [-1, 1]ⁿ
LinearMaxwellVlasov.UnitSemicircleIntegrandTransform
— TypeTransform a function to transform an integrand from domain [-∞, 0]×[∞, ∞] down to [-1, -π/2]×[1, π/2].
Example:
julia> f(x) = exp(-(x[1]^2 + x[2]^2)/2) * cos(x[2])^2 * sin(x[1])^2
julia> hcubature(f, [-12.0, 0.0], [12.0, 12.0])
(0.7710130943379178, 1.1482318484139944e-8)
julia> hcubature(UnitSemicircleIntegrandTransform(f, 2.0), [0, -π/2], [1, π/2])
(0.7710130940919337, 1.1464196819507393e-8)
LinearMaxwellVlasov.WarmSpecies
— TypeWarm plasma species, with speeds of sound parallel and perpendicular to the magnetic field. Fields:
Π
Plasma frequency [rad / s]Ω
Cyclotron Frequency [rad / s]soundspeed
Sound speed [m/s]
LinearMaxwellVlasov.WarmSpecies
— MethodWarmSpecies(Π::Float64,Ω::Float64,thermalspeed::Float64,adiabiaticindex::Number)
Warm plasma species - accept thermalspeed and ratio of specific heats to get sound speed
...
Arguments
Π
: Plasma frequency [rad / s]Ω
: Cyclotron Frequency [rad / s]thermalspeed
: Thermal speed of Maxwellian distributionadiabiaticindex
: Equation of state Gruneisen gamma (ratio of specific heats)
...
LinearMaxwellVlasov.WarmSpecies
— MethodWarmSpecies(s::T,γ=5/3)where{T<:AbstractSeparableVelocitySpecies{
Create a warm plasma species from the AbstractSeparableVelocitySpecies
...
Arguments
s::T
:γ=5/3where{T<:AbstractSeparableVelocitySpecies{
:
...
LinearMaxwellVlasov.Wavenumber
— TypeWavenumber decomposed into parallel and perpendicular components Construct with parallel and wavenumber components, or by keyword arguement pairs
- parallel & perpendicular
- wavenumber & propagationangle
Base.Filesystem.cp
— MethodRegarding integrals with besselj(n, x)* besselj(n±1, x), e.g.: where m >= 0
besselj(-m,x) * besselj(-m-1,x) == -besselj(m,x) * besselj(m+1,x)
besselj(-m+1,x) * besselj(-m-1,x) == +besselj(m-1,x) * besselj(m+1,x)
Base.get!
— MethodBase.get!(f::F,data::Dict{UInt64,CacheDict{C}},species,config)where{F<:Function,C<:AbstractCacheType}
Return the correct cache dictionary for the given species and configuration.
This creates a CacheKeyOp with the arguments given so that it can create a CacheDict with the correct type, which then populates the CacheDict if it's empty. This process acts as a function barrier to get better type inference.
...
Arguments
f::F
: The function to cachedata::Dict{UInt64
: the dictionary of cachesspecies
: The species argument to fconfig
: The configuration argument to f
...
Base.get!
— MethodBase.get!(f::F,cache::CacheDict{C,V},i...)::Vwhere{F<:Function,C<:AbstractCacheType,V}
description
...
Arguments
f::F
:cache::CacheDict
:i...
:
...
LinearMaxwellVlasov.FShell
— MethodFShell(vth::Real,vshell::Real)
The shell distribution function, as though f is only non-zero on or close to the surface of a sphere.
...
Arguments
vth::Real
: the thermal velocity of the shell [m/s]vshell::Real
: the speed of the shell [m/s]
...
Example
LinearMaxwellVlasov.FSlowingDown
— MethodFSlowingDown(vbeam::Real,vcrit::Real,vcutoffwidth::Real)
The slowing down distribution
...
Arguments
vbeam::Real
: the beam speed [m/s]vcrit::Real
: the critival velocity [m/s]vcutoffwidth::Real
: the width of the error function used to smooth
the distribution function at vbeam [m/s] ...
Example
LinearMaxwellVlasov.Jμν
— MethodThe non-integer argument to the BesselJ
LinearMaxwellVlasov.MaxwellianSpecies
— FunctionMaxwellianSpecies(Π,Ω,vthb,vth⊥=vthb,vdb=0.0)
Kinetic Maxwellian Plasma species that can optionally have a drift along the magnetic field
...
Arguments
Π
: Plasma frequency [rad / s]Ω
: Cyclotron Frequency [rad / s]vthb
: parallel thermal speed [m/s]vth⊥=vthb
: perpendicular thermal speed [m/s]vdb=0.0
: parallel beam speed [m/s]
Returns
SeparableVelocitySpecies(Π, Ω, FBeam(vthb, vdb), FPerpendicularMaxwellian(vth⊥))
...
Example
LinearMaxwellVlasov.RingBeamSpecies
— FunctionCreate a kinetic plasma species with separable distribution functions parallel $f(v_\parallel)$ and perpendicular $f(v_\perpendicular)$ to the magnetic field, which are defined as a drifting beam and a ring respectively. ...
Arguments
Π
: Plasma frequency [rad / s]Ω
: Cyclotron Frequency [rad / s]vthb
: parallel thermal speed [m/s]vth⊥=vthb
: perpendicular thermal speed [m/s]vdb=0.0
: parallel beam speed [m/s]vd⊥=0.0
: perpendicular ring speed [m/s]
Returns
SeparableVelocitySpecies(Π, Ω, FBeam(vthb, vdb), FRing(vth⊥, vd⊥))
...
Example
LinearMaxwellVlasov.alfvenspeed
— MethodCalculate the Alfven speed given Π_Ωs, which is an iterable container of the ratio of the plasma to the cyclotron frequency of all the species of the plasma
LinearMaxwellVlasov.conductivity
— FunctionThe conducivity tensor for a given species
LinearMaxwellVlasov.contribution
— FunctionCalculate the unitless susceptibility tensor contribution for a coupled velocity distribution function, without the need to sum over harmonics.
LinearMaxwellVlasov.contribution
— FunctionCalculate the unitless susceptibility tensor for a warm plasma species Swanson 3.63
LinearMaxwellVlasov.contribution
— FunctionCalculate the converged unitless susceptibility tensor contribution for a maxwellian distribution function, having summed over bessel indices n.
LinearMaxwellVlasov.contribution
— FunctionCalculate the converged unitless susceptibility tensor contribution for a maxwellian distribution function, having summed over bessel indices n.
LinearMaxwellVlasov.contribution
— FunctionCalculate the unitless susceptibility tensor for a cold plasma species
LinearMaxwellVlasov.contribution
— MethodCalculate the unitless susceptibility tensor for a maxwellian distribution function given the bessel indices n.
LinearMaxwellVlasov.converge
— Methodconverge(f::T,tol::Tolerance=Tolerance()) where {T}
Sum the output of f starting with argument 0 and (1,-1), (2,-2)... etc until the convergence criterion is met based on the tolerance
...
Arguments
f::T
: input function or functortol::Tolerance=Tolerance
: Tolerance object containing relative and absolute tolerances
...
Example
LinearMaxwellVlasov.curlcurl
— Methodjulia> using Symbolics julia> @syms kx ky kz; julia> k = [kx, ky, kz]; julia> curl = im * [0 -k[3] k[2]; k[3] 0 -k[1]; -k[2] k[1] 0]; julia> curl * curl 3×3 Matrix{Any}: ky^2 + kz^2 -kxky -kxkz -kxky kx^2 + kz^2 -kykz -kxkz -kykz kx^2 + ky^2
LinearMaxwellVlasov.cyclotronfrequency
— Functioncyclotronfrequency(B::Number,mass::Number,Z::Number=1)
...
Arguments
B::Number
: magnetic field in Tmass::Number
: mass in kgZ::Number=1
: charge number
...
LinearMaxwellVlasov.defaults
— Methoddefaults(::Type{T}=Float64)where{T}
The default settings for the Options object.
...
Arguments
::Type{T}=Float64where{T}
: the number type to express the tolerances in
...
LinearMaxwellVlasov.dielectric
— FunctionThe dielectric tensor for a given plasma
LinearMaxwellVlasov.dielectriccontribution
— FunctionThe contribution to the dielectric tensor for a given species
LinearMaxwellVlasov.discretefouriertransform
— Methoddiscretefouriertransform(f::T,n::Int,N=512)where{T<:Function}
calculate the DFT of function f at Fourier mode n with N points in the interval [0,2π]
...
Arguments
f::T
: DFT of this functionn::Int
: DFT of this Fourier modeN=512
: evaluate f at this many points
...
LinearMaxwellVlasov.electrostatictensor
— FunctionThe electrostatic dielectric tensor for a given plasma, a zero valued determinant of which represents a solution to the linear poisson-vlasov system of equations
LinearMaxwellVlasov.fastisapprox
— Methodfastisapprox(n,x,y,atol,rtol,nans)
...
Arguments
n
: normalisationx
: compare thisy
: with thatatol
: absolute tolerancertol
: relative tolerancenans
: whether to treat NaNs as equal
...
Example
LinearMaxwellVlasov.foldnumeratoraboutpole
— MethodTakes a function that when integrated between -Inf and +Inf returns value x, and returns a new function that returns x when integrated between real(pole) and +Inf.
LinearMaxwellVlasov.integrate
— FunctionIntegration of Abstract Arbitrary FParallel
LinearMaxwellVlasov.integrate
— MethodThe integrals over the distribution functions and associated integral kernel We avoid doing integrals involving the derivative of the Dirac delta function by doing integral by parts and knowing that f-> 0 and the integral limits
LinearMaxwellVlasov.integrate
— MethodCalculate the parallel integral with principal part and residue
LinearMaxwellVlasov.integrate
— MethodThe integrals over the distribution functions and associated integral kernel We avoid doing integrals involving the derivative of the Dirac delta function by doing integral by parts and knowing that f-> 0 and the integral limits
LinearMaxwellVlasov.integrate
— MethodIntegrate over the parallel distribution function multiplied by various kernels. If the imaginary part of the pole is zero, then do a trick that folds over the integral from the left of the pole to right. We need to take into account whether the real part of the pole is negative, otherwise positive slopes at negative velocities give rise to instability and not damping.
LinearMaxwellVlasov.integrate
— Methodintegrate(f::AbstractFPerpendicular,kernel::T,∂F∂v::Bool,tol::Tolerance=Tolerance()
Integration of Abstract Arbitrary FPerpendicular with respect to kernel where the distribution function may be differentiated. If quadrature is involved it will adaptively calculate the integral until the tolerance is met.
...
Arguments
f::AbstractFPerpendicular
:kernel::T
: the kernel e.g. v⊥^2 * BesselJ(n, v⊥^2 * β^2)^2 etc.∂F∂v::Bool
: differentiate with respect to velocity, or not.tol::Tolerance=Tolerance
:
...
Example
LinearMaxwellVlasov.isneutral
— Methodisneutral(vs::AbstractVector{T},atol=100eps()
Calculate if a plasma is neutral
...
Arguments
vs::AbstractVector{T}
: A vector of speciesatol=100eps()
: tolerance for deciding upon neutrality
...
LinearMaxwellVlasov.limitsfolder
— MethodTransform the limits of an integrand quadrature(foldnumeratoraboutpole(integrand, pole), limitsfolder(limits, pole)...)
LinearMaxwellVlasov.normalise
— MethodTool to normalize a function f between two integral limits a and b
LinearMaxwellVlasov.parallel
— MethodInterface The parallel integral of the distribution function and the relevant kernel
LinearMaxwellVlasov.parallel
— MethodParallel integrals for the Beam - used for testing purposes
LinearMaxwellVlasov.parallel
— MethodCompile the kernels of the parallel integral and fetch it from the DistributionFunctions module. If k parallel is zero then there is no Landau damping, so this case is made separate, as is easier to deal with.
LinearMaxwellVlasov.parallel_integral
— Methodparallel_integral(species::S,config::Configuration,parallelcaches=Dict{UInt64,CacheDict{ParallelCache}}()) where {S}
Memoise the inputs to the integrals; export the memoised function, and the dictionary of inputs -> outputs. This uses a parallel cache which holds the logic for the integrals and ensure that the values are only calculated once. It only matters what n-m is, not the values of n and m individually So change (n, m)->(n-m, 0) to do fewer calculations
...
Arguments
species::S
: the species to do parallel integrals overconfig::Configuration
: the configuration holding frequency and wavenumber, and options.parallelcaches=Dict{UInt64,CacheDict{ParallelCache}}
: The dict to store parallel integrals
...
Example
LinearMaxwellVlasov.perpendicular
— MethodInterface The perpendicular integral of the distribution function and the relevant kernel
LinearMaxwellVlasov.perpendicular
— MethodCalculate the definite integral kernels of the perpenedicular distribution function, or derivative thereof, multiplied by the kernel functions
LinearMaxwellVlasov.perpendicular_integral
— FunctionMemoise the inputs to the integrals; export the memoised function, and the dictionary of inputs -> outputs besselj harmonic numbers n and l can be any order Use this to do only half the calculatons (n, l)->(min(n, l), max(n, l)) Also know that besselj(-n, x) = (-1)^n * besselj(n, x)
LinearMaxwellVlasov.plasma_dispersion_function
— MethodReturn the value of the plasma dispersion function This implementation includes the residue, which is easy to verify because Z(0) = im sqrt(π).
- x is the argument to the plasma disperion function
- power is the moment of the integral
[1] S.D. Baalrud, Phys. Plasmas 20, 012118 (2013) and put ν = -Inf [2] M. Sampoorna et al., Generalized Voigt functions and their derivatives, Journal of Quantitative Spectroscopy & Radiative Transfer (2006), doi:10.1016/j.jqsrt.2006.08.011
LinearMaxwellVlasov.plasmafrequency
— Functionplasmafrequency(n::Number,mass::Number,Z::Number=1)
...
Arguments
n::Number
: species number density in m^-3mass::Number
: particle mass in kgZ::Number=1
: Charge number
...
LinearMaxwellVlasov.residue
— Methodresidue(principalpart,pole::Number)
...
Arguments
principalpart
:pole::Number
:
...
LinearMaxwellVlasov.residue
— Methodresidue(numerator::T,pole::Number)where{T<:Function}
Calculate the residue of a number function at a pole
...
Arguments
numerator::T
:pole::Number
:
...
LinearMaxwellVlasov.residuepart
— MethodExpressing f(x) = ∑ᵢ aᵢ (x - p)ⁱ find a₋₁
LinearMaxwellVlasov.residuepartadaptive
— Methodresiduepartadaptive(f::T,pole::Number,radius::Real=(isreal(pole)?abs(pole):imag(pole))*sqrt(eps()),
Expressing f(x) = ∑ᵢ aᵢ (x - p)ⁱ find a₋₁ by doing a Laurent transform via discrete Fourier transform by evaluating f
on walk around the pole. The number of evaluations grows with each loop until the tolerance has been met.
...
Arguments
f::T
: function to calculate residue of...pole::Number
: ... at this poleradius::Real=(isreal(pole) ? abs(pole) : imag(pole)) * sqrt(eps())
: radius of the residueN::Int=64
: the number of points to evaluate the residue initiallytol::Tolerance=Tolerance()
: Tolerance object
...
LinearMaxwellVlasov.residuesigma
— Methodresiduesigma(pole::Number) = imag(pole) < 0 ? 2 : imag(pole) == 0 ? 1 : 0
Calculate the "sigma" factor of the residue
LinearMaxwellVlasov.tensor
— FunctionCalculate the tensor representing the linear Maxwell-Vlasov set of equations. The determinant is zero when the wavenumber and frequency represent a solution to the linear Maxwell-Vlasov system of equations for these species. Note that the curlcurl operator keeps track of the factor of -1 from im^2.
LinearMaxwellVlasov.thermalspeed
— Methodthermalspeed(ϵ_V::Number, mass::Number)
Thermal speed defined as sqrt(2 * q₀ * ϵ_V / mass)
''' # Arguments
ϵ_V::Number
: energy in electron Voltsmass::Number
: particle mass in kg
'''
LinearMaxwellVlasov.transformaboutroots
— MethodConcertina and rescale a function in the sections between its roots such that all roots lie at -1 or +1. Integration over -1..1 of the resulting function gives the same answer as integration over original -Inf..Inf domain
LinearMaxwellVlasov.wavedirectionalityhandler
— Methodwavedirectionalityhandler(x::Number,kz::Number)
Take into account the size of kz when performing parallel integrals
Most codes, assume that kz is real, but this is not always the case. Usually, they take the absolute value of kz, but this does not respect complex kz in convetive instability calculations, for example
...
Arguments
x::Number
:kz::Number
:
...
LinearMaxwellVlasov.zerobetamagnetoacousticfrequency
— MethodEq. 25 of R. O. Dendy, C. N. Lashmore-Davies, and K. G. McClements, G. A. Cottrell, The excitation of obliquely propagating fast Alfven waves at fusion ion cyclotron harmonics, Phys. Plasmas 1 (6), June 1994
Index
Core.Type
LinearMaxwellVlasov.CacheOp
LinearMaxwellVlasov.ColdSpecies
LinearMaxwellVlasov.ConcertinaSinpi
LinearMaxwellVlasov.Configuration
LinearMaxwellVlasov.CoupledRelativisticSpecies
LinearMaxwellVlasov.CoupledRelativisticSpecies
LinearMaxwellVlasov.CoupledVelocitySpecies
LinearMaxwellVlasov.CoupledVelocitySpecies
LinearMaxwellVlasov.FBeam
LinearMaxwellVlasov.FCoupledVelocityNumerical
LinearMaxwellVlasov.FParallelDiracDelta
LinearMaxwellVlasov.FParallelNumerical
LinearMaxwellVlasov.FPerpendicularDiracDelta
LinearMaxwellVlasov.FPerpendicularNumerical
LinearMaxwellVlasov.FRing
LinearMaxwellVlasov.MaxwellianIntegralsParallel
LinearMaxwellVlasov.MaxwellianIntegralsPerpendicular
LinearMaxwellVlasov.NeutralPlasma
LinearMaxwellVlasov.Options
LinearMaxwellVlasov.PerpendicularKernel
LinearMaxwellVlasov.Plasma
LinearMaxwellVlasov.RelativisticHarmonic
LinearMaxwellVlasov.RelativisticMaxwellian
LinearMaxwellVlasov.SeparableVelocitySpecies
LinearMaxwellVlasov.ShiftedMaxwellianParallel
LinearMaxwellVlasov.ShiftedMaxwellianPerpendicular
LinearMaxwellVlasov.TransformFromInfinity
LinearMaxwellVlasov.UnitSemicircleIntegrandTransform
LinearMaxwellVlasov.WarmSpecies
LinearMaxwellVlasov.WarmSpecies
LinearMaxwellVlasov.WarmSpecies
LinearMaxwellVlasov.Wavenumber
Base.Filesystem.cp
Base.get!
Base.get!
LinearMaxwellVlasov.FShell
LinearMaxwellVlasov.FSlowingDown
LinearMaxwellVlasov.Jμν
LinearMaxwellVlasov.MaxwellianSpecies
LinearMaxwellVlasov.RingBeamSpecies
LinearMaxwellVlasov.alfvenspeed
LinearMaxwellVlasov.conductivity
LinearMaxwellVlasov.contribution
LinearMaxwellVlasov.contribution
LinearMaxwellVlasov.contribution
LinearMaxwellVlasov.contribution
LinearMaxwellVlasov.contribution
LinearMaxwellVlasov.contribution
LinearMaxwellVlasov.converge
LinearMaxwellVlasov.curlcurl
LinearMaxwellVlasov.cyclotronfrequency
LinearMaxwellVlasov.defaults
LinearMaxwellVlasov.dielectric
LinearMaxwellVlasov.dielectriccontribution
LinearMaxwellVlasov.discretefouriertransform
LinearMaxwellVlasov.electrostatictensor
LinearMaxwellVlasov.fastisapprox
LinearMaxwellVlasov.foldnumeratoraboutpole
LinearMaxwellVlasov.integrate
LinearMaxwellVlasov.integrate
LinearMaxwellVlasov.integrate
LinearMaxwellVlasov.integrate
LinearMaxwellVlasov.integrate
LinearMaxwellVlasov.integrate
LinearMaxwellVlasov.isneutral
LinearMaxwellVlasov.limitsfolder
LinearMaxwellVlasov.normalise
LinearMaxwellVlasov.parallel
LinearMaxwellVlasov.parallel
LinearMaxwellVlasov.parallel
LinearMaxwellVlasov.parallel_integral
LinearMaxwellVlasov.perpendicular
LinearMaxwellVlasov.perpendicular
LinearMaxwellVlasov.perpendicular_integral
LinearMaxwellVlasov.plasma_dispersion_function
LinearMaxwellVlasov.plasmafrequency
LinearMaxwellVlasov.residue
LinearMaxwellVlasov.residue
LinearMaxwellVlasov.residuepart
LinearMaxwellVlasov.residuepartadaptive
LinearMaxwellVlasov.residuesigma
LinearMaxwellVlasov.tensor
LinearMaxwellVlasov.thermalspeed
LinearMaxwellVlasov.transformaboutroots
LinearMaxwellVlasov.wavedirectionalityhandler
LinearMaxwellVlasov.zerobetamagnetoacousticfrequency